In vitro growth (IVG) culture of bovine oocyte-cumulus-granulosa complexes (OCGCs) is generally carried out for 12 or 14 days using conventional gas impermeable culture devices. The culture duration may be longer compared to follicular development in vivo. During follicular development, follicles receive oxygen from microvessels; however, oxygen supply is limited under the culture using conventional gas impermeable devices. The purpose of this study was to investigate the effect of increasing dissolved oxygen availability using a gas permeable (GP) culture device with or without antioxidant (astaxanthin, Ax) supplementation on 8-day IVG culture systems for bovine OCGCs derived from early antral follicles. We cultured OCGCs in GP, GP supplemented with Ax (GP + Ax), and a conventional gas impermeable device (control) for 8 or 12 days. OCGC viability was significantly higher when cultured for 8 days than 12 days (p < 0.001) in all culture conditions, but a significant difference was not observed between groups (p > 0.05). Antrum formation rates of OCGCs were higher after 12 days than 8 days of culture in all culture conditions (p < 0.001) and were significantly higher in the control than GP groups regardless of Ax supplementation (p < 0.05). Oocyte diameters were similar among day-8 GP + Ax, day-8 control, and day-12 control groups (p > 0.05). Nuclear maturation rates of oocytes grown in vitro for 8 days were significantly higher in the GP + Ax group than in the control and the GP groups (p < 0.05) and similar to oocytes grown for 12 days regardless of the culture conditions (p > 0.05). The generation of reactive oxygen species in OCGCs on day 8 of IVG culture was significantly lower in the GP + Ax group than those of the GP and control groups (p < 0.05). IVG oocytes after eight days of culture developed into blastocysts, and the cleavage and blastocyst rates were similar in all treatment groups. However, in vivo-grown oocytes had significantly higher (p < 0.05) cleavage and blastocyst rates than the IVG oocytes in all groups. The present study demonstrates that increased oxygen availability using a GP culture device with Ax supplementation promotes oocyte growth and maturation competence but inhibits proliferation of granulosa cells and antrum formation compared with a conventional gas impermeable culture device and that OCGCs can attain developmental competence after 8 days of IVG culture.